TOTAL INTERNAL REFLECTION ELLIPSOMETRY STUDY OF SARS-COV-2 OMICRON SPIKE PROTEIN AND POLYCLONAL ANTIBODIES INTERACTION

Mantvydas Usvaltas¹, Vincentas Mačiulis², Ieva Plikusienė^{1,2}

¹Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University
²State Research Institute Centre for Physical Sciences and Technology, Department of Nanotechnology mantvydas.usvaltas@gmc.stud.vu.lt

It has been over two years since the detection of the SARS-CoV-2 Omicron variant, characterized by the highest number of mutations [1]. The vaccines provided a protection in the form of antibodies produced by the body against the original strain but understanding how the antibodies interact with other variants is of great importance. In this study, we investigated the interactions between specific polyclonal human antibodies and the Spike protein of SARS-CoV-2 Omicron variant. To assess whether the vaccines generated a higher amount of antibodies against this variant, we analyzed the blood serums of two individuals: one vaccinated against the wild-type SARS-CoV-2, and the other unvaccinated but recovered after the COVID-19 infection.

The use of total internal reflection ellipsometry provided a non-destructive, label-free, and highly sensitive approach [2]. This optical method employs surface plasmon resonance and allows real-time monitoring of interactions between molecules on the sensing surface of a biosensor and kinetics measurements. Such measurements were performed to determine the surface mass density formed on the sensing surface after the immunocomplex formation of specific polyclonal human antibodies to the Spike protein of SARS-CoV-2 Omicron variant by the use of mathematical modeling [3].

In this study, a self-assembling monolayer comprised of 11-mercaptoundecanoic acid molecules was utilized to immobilize the Spike protein onto the gold surface of a sensor disc. During the analysis, multiple dilutions of blood serums were prepared, and differences between the blood serums taken from vaccinated and unvaccinated individuals were observed. Notably, a higher amount of mass was formed on the sensing surface after the interaction between the SARS-CoV-2 Omicron Spike protein and the antibodies in blood serum taken from an individual who was vaccinated against the wild-type strain.

Acknowledgment: This project has received funding from the Research Council of Lithuania (LMTLT), agreement No [S-LZ-23-1]

^[1] P. Mistry et al., 'SARS-CoV-2 Variants, Vaccines, and Host Immunity', Front Immunol, vol. 12, p. 809244, 2021, doi: 10.3389/fimmu.2021.809244.

^[2] I. Plikusiene, V. Maciulis, S. Juciute, A. Ramanavicius, and A. Ramanaviciene, 'Study of SARS-CoV-2 Spike Protein Wild-Type and the Variants of Concern Real-Time Interactions with Monoclonal Antibodies and Convalescent Human Serum', Biosensors (Basel), vol. 13, no. 8, p. 784, Aug. 2023, doi: 10.3390/bios13080784.

^[3] I. Plikusiene et al., 'Investigation of SARS-CoV-2 nucleocapsid protein interaction with a specific antibody by combined spectroscopic ellipsometry and quartz crystal microbalance with dissipation', Journal of Colloid and Interface Science, vol. 626, pp. 113–122, Nov. 2022, doi: 10.1016/j.jcis.2022.06.119.