HYBRID NASICON TYPE BATTERIES MATERIALS SOLID-STATE NMR RESEARCH Matas Manionis¹, Vytautas Klimavicius¹ ¹Vilnius University matas.manionis@ff.stud.vu.lt Widely used lithium ion batteries face problems such as the reduction of effectiveness after a long time usage, dendrite and toxic salt formation, complicated disposal. A NASICON type material $NaTi_2(PO_4)_3$, made from naturally abundant sodium, is a potential candidate for anode synthesis, of next generation batteries, because of its thermal and structural stability and good ionic conductivity. To analyze how batteries work and why they fail, a reliable spectroscopy method called Nuclear Magnetic Resonance (NMR) is used, to measure and investigate stuctures of crystalline and amorphous compounds on a molecular scale. By using NMR relaxation filter methods it is possible to create a library of ^{23}Na , ^{31}P and ^{1}H nuclei spectra and use it to investigate potential batteriesálternatives. Fig. 1. a) 23 Na spectrum with different impulse delay times, b) 23 Na spectrum approximated with theoretical curves c) 31 P spectrum with different impulse delay times d) 1 H spectrum .