EPR SPECTROSCOPY OF STRUCTURAL PHASE TRANSITION IN $\mathrm{CH}_{3} \mathbf{N H}_{3} \mathrm{PbCl}_{3}$ HYBRID PEROVSKITE
 Gediminas Usevičius ${ }^{1}$, Michael A Hope ${ }^{2}$, Justinas Turčak ${ }^{1}$, Jūras Banys ${ }^{1}$, Mantas Šimènas ${ }^{1}$
 ${ }^{1}$ Faculty of Physics, Vilnius University, Sauletekio av. 9, 10222 Vilnius, Lithuania
 ${ }^{2}$ Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
 gediminas.usevicius@ff.vu.lt

Recently, hybrid organic-inorganic compounds have attracted immense attention of the scientific community due to their diverse physical and chemical properties. One of the most interesting and researched subgroups of hybrid perovskites is methylammonium (MA) lead halides MAPbX_{3} (where $\mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}$), due to their potential applications in efficient and low-cost solar cells, LEDs, and photodetectors [1].

Here, we use electron paramagnetic resonance (EPR) spectroscopy to study the dynamics of methylammonium cations and structural phase transitions in methylammonium lead chloride $\mathrm{CH}_{3} \mathrm{NH}_{3} \mathrm{PbCl}_{3}$. In this work, we employ temperature dependent multifrequency continious-wave (CW) and pulsed EPR spectroscopy to characterize paramagnetic Mn^{2+} probe ions in MAPbX_{3}. The temperature dependent CW spectra reveal a sudden increase in the zero-field splitting of the Mn^{2+} ions at about 175 K (Fig. 1). This indicates a first-order phase transition related to the deformation of the inorganic framework due to the tetragonal-orthorhombic symmetry lowering.

Fig. 1. Temperature dependence of the axial zero-field splitting parameter of $\mathrm{MAPbX}_{3}: \mathrm{Mn}$.

Using pulsed EPR spectroscopy, studying the temperature dependence of the T_{1} relaxation time and the decoherence time T_{2} of the Mn^{2+} centers in $\mathrm{MAPbCl}{ }_{3}$, we found that T_{1} is governed by the direct process and the Raman process due to optical phonons. We relate the obtained phonon energy of $59(4) \mathrm{cm}^{-1}$ to the dynamics of the inorganic framework.

This project has been funded by the Research Council of Lithuania (LMTLT) (agreement No. S-MIP-22-73).

[^0]
[^0]: [1] Kojima, A., et al., J. Am. Chem. Soc., 131, 6050-6051 (2009).

