SYNTHESIS OF FUNCTIONALISED M-TERPHENYLS AND **CHEMOENZYMATIC SEPARATION OF ATROPISOMER** Kristupas Volbikas^{1,2,3}, Tomas Paškevičius¹, Ringailė Lapinskaitė¹, Nina Urbelienė², Linas Labanauskas¹, Rolandas Meškys² ¹Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos st. 7 LT-08412 Vilnius ²Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio Ave 7, LT-10257 Vilnius ³Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius kristupas.volbikas@chgf.stud.vu.lt Fig. 1. General scheme for m-terphenyl synthesis. Stucture of phosphine ligand AlPhos Fluorinated aromatic substances are widely used in medicine¹ and agriculture². However, their synthesis remains complicated with commonly used methods being non-selective, requiring harsh conditions and resulting in modest product yields for sensitive substrates. A possible solution to these problems is the use of transition-metal catalysis. Its application in C-F bond formation remained elusive until relatively recently and is still requiring more research to be done.³ Thus, our team is developing new ligands, based on the structure of AlPhos⁴ (Fig. 1. right side), for palladium (0/II) catalysed C-F cross-coupling reactions, with the aim of expanding the (hetero)aromatic substrate range of these reactions. These ligands consist of a di-tert-alkylphosphine (Fig. 1. colored red) coupled with a m-terphenyl backbone (Fig. 1. colored blue). My work covers the synthesis and modification of the *m*-terphenyl backbone. Furthermore, these m-terphenyl backbones possess axial chirality. Synthetic methods for atropisomer separation are usually difficult, require specialised equipment and reagents.⁵ Different esterases have been successfully used to separate (hetero)biaryl atropisomers with high enantioselectivity and good yields, although m-terphenyl compounds have yet to be studied.⁶ This work will bring a better understanding on how different esterases interact with highly hydrophobic atropisomeric substrates such as acetate 3. ^[1] Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A.; J. Med. Chem. 2015, 58, 8315-8359 ^[2] Jeschke, P.; ChemBioChem 2004, 5, 570-589 ^[3] Campbell, M. G.; Ritter, T.; Chem. Rev. 2015, 115, 612-633 ^[4] Sather, A. C.; Lee, H. G.; Valentina, R.; Yang, Y.; Müller, P.; Buchwald, S. L.; J. Am. Chem. Soc. 2015, 137, 13433-13438 ^[5] Carlsson, A.; Karlsson, S.; Munday, R. H.; Tatton, M. R.; Acc. Chem. Res. 2022, 55 (20), 2938-2948 ^[6] Olivia; Berreur, J.; Beatrice; Clayden, J.; Acc. Chem. Res. 2022, 55 (23), 3362-3375