DI-TERT-ALKYLPHOSPHINE SYNTHESIS AND INVESTIGATION OF CHEMOENZYMATIC SYNTHESIS OF THEIR PRECURSORS -TERTIARYACETATES <u>Jonas Paukštys</u>^{1,2,3}, Tomas Paškevičius¹, Ringailė Lapinskaitė¹, Nina Urbelienė², Linas Labanauskas¹, Rolandas Meškys² ¹Department of Organic Chemistry, Center for Physical Sciences and Technology, Akademijos st. 7 LT-08412 Vilnius ²Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Sauletekio Ave 7, LT-10257 Vilnius ³Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko st. 24, LT-03225 Vilnius jonas.paukstys@gmc.stud.vu.lt Bulky di-*tert*-alkylbiaryl phosphines are used in palladium catalysed cross-coupling reactions (Buchwald amination, Suzuki-Miyaura cross coupling, Heck reaction, etc) [1]. More efficient catalysts may be developed by modifying steric and electronic properties of these ligands. However, synthesis of di-alkyl phosphines involves multiple steps [2] and toxic, highly reactive reagents [3]. Our newly developed method eliminates some of these challenges using easier to handle tris(trimethylsilyl)phosphine ($P(TMS)_3$) (Fig.1). Phosphine nucleophile generated *in situ* from $P(TMS)_3$ and triflic acid reacts with an electrophylic tertiary carbocation. The final product of this umpolung (P^-/C^+) reaction is an easily isolatable air-stable phosphine triflate salt. Fig. 1. Synthesis of di-tert-alkyl phosphine salts using P(TMS)₃ Currently tertiary acetates are synthesised chemically, however chemoenzymatic reactions present a greener, more energy-efficient, and in some cases, less labour-intensive means to synthesize organic molecules in comparison to traditional methods [4]. In our study a wide variety of esterases were tested for acetylation and hydrolysis of tertiary alcohols and esters (Fig. 2). Most efficient enzymes were selected for further investigations. HO Me esterase $$R_1$$ R_2 R_2 R_1 R_2 Fig. 2. Chemoenzymatic synthesis of tertiary acetates ^[1] Surry, D.S.; Buchwald, S.L. Biaryl phosphane ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 2008, 47 (34), 6338-6361 ^[2] Kendall, A.J.; Tyler, D.R. The synthesis of heteroleptic phosphines. Dalton Trans. 2015, 44 (28), 12473-12483 ^[3] Barber, T.; Argent, S.P.; Ball, T.L. Expanding Ligand Space: Preparation, Characterization, and Synthetic Applications of Air Stable, Odorless Di-tert-alkylphosphine Surrogates. ACS Catalysis, 2020, 10 (10), 5454-5461 ^[4] Roddan, R.; Carter, E.M., Thair, B.; Hailes, H.C. Chemoenzymatic approaches to plant natural product inspired compounds. Nat. Prod. Rep. 2022, 39 (7), 1375-1382