THEORETICAL INVESTIGATION OF ENERGY LEVELS FOR BA VI

Kotryna Šiškauskaitė¹, Gediminas Gaigalas¹, Pavel Rynkun¹, Laima Kitovienė¹

¹Institute of Theoretical Physics and Astronomy, Vilnius University kotryna.siskauskaite@steam.vu.lt

This ion was selected for the investigation as it is of great importance to Astrophysics. It is evident that the lines can be observed in hot white dwarf stars [1]. In this work energy levels for Ba VI will be presented. The calculations for Ba VI are performed using general-purpose atomic structure package GRASP2018, based on multiconfiguration Dirac-Hartree-Fock and relativistic configuration interaction (RCI) methods.

As this ion is of Sb isoelectronic sequence, it was calculated using the same principle like in [2]. Active space (AS) method was used to compute radial wave functions layer by layer for four sets of virtual orbitals (AS₁₋₄). Single and double substitutions were done from multi reference set of orbitals up to 11s, 11p, 10d, 8f, 8g, 8h. Substitutions from [Kr]4 d^{10} core shells were forbidden. After calculating AS₄, RCI method was used to further increase the accuracy of Ba VI energy level calculations. In total, 231 energy levels belonging to the configurations $5s^25p^4f^2$, $5s^25p^24f$, $5s5p^34f$, $5p^5$, $5s^25p^2\{5d$, 6p, 6s}, $5s^25p^3$, $5s^25p^3$, $5s^5p^3$ 6d, $5s5p^3$ 6d, $5s5p^3$ 6d and $5s5p^4$ were computed.

50 levels were selected based on the data availability at National Institute of Standards and Technology Atomic Spectra database (NIST) [3] for comparison. The relative difference to NIST data is displayed in Figure 1. The biggest disagreement is observed in $5s^25p^25d$ and $5s5p^4$ configuration levels, as the energies appear to be reversed in our calculations. The average relative difference compared to NIST [3] for AS₄ is 1.2%. In order to increase the accuracy of energy levels, core, core-valence, core-core correlations need to be investigated. During the conference further data from the calculations will be presented.

Conf.	^{M}L	J	$E_{NIST} \mathrm{cm}^{-1}$	$\mathrm{AS_3\%}$	$\mathrm{AS_4\%}$	Conf.	^{M}L	J	$E_{NIST} \mathrm{~cm}^{-1}$	$AS_3\%$	$AS_4\%$
$5s^25p^3$	4S	3/2	0.0	0.0	0.0	$5s^25p^2(^1D)5d$	^{2}G	7/2	212208.6	2.6	2.6
$5s^25p^3$	^{2}D	3/2	17260.6	1.2	1.1	$5s^25p^2(^1D)5d$	2G	9/2	222540	-0.3	-0.3
$5s^{2}5p^{3}$	^{2}D	5/2	23547.2	1.0	0.9	$5s^25p^2(^3P)5d$	4P	5/2	214870.8	2.3	2.3
$5s^25p^3$	^{2}P	1/2	36155.7	2.2	2.1	$5s^25p^2(^3P)5d$	4P	3/2	217346.5	2.2	2.2
$5s^{2}5p^{3}$	^{2}P	3/2	49621	0.4	0.4	$5s^25p^2(^3P)5d$	4P	1/2	218693.8	2.2	2.2
$5s5p^4(^3P)$	4P	5/2	128436.3	-2.2	-2.1	$5s^25p^2(^3P)5d$	^{2}D	3/2	224093.2	0.9	0.8
$5s5p^4(^3P)$	4P	3/2	139920.1	-2.1	-2.1	$5s^25p^2(^3P)5d$	^{2}D	5/2	228330.9	2.1	2.2
$5s5p^4(^3P)$	4P	1/2	142851.9	-2.0	-2.0	$5s^25p^2(^1D)5d$	^{2}P	1/2	234313.6	0.4	0.4
$5s5p^{4}(^{1}D)$	^{2}D	3/2	158158.4	-0.7	-0.7	$5s^25p^2(^1D)5d$	^{2}P	3/2	246496.2	2.1	2.1
$5s5p^{4}(^{1}D)$	^{2}D	5/2	163566.3	-0.8	-0.8	$5s^25p^2(^1D)5d$	^{2}D	3/2	235818.7	2.3	2.3
$5s^25p^2(^3P)5d$	^{2}P	3/2	176498	-0.3	-0.3	$5s^25p^2(^1D)5d$	^{2}D	5/2	236640.5	3.1	3.0
$5s^25p^2(^3P)5d$		1/2	229293.1	-0.6	0.6	$5s^25p^2(^3P)5d$	^{2}F	7/2	242157.2	2.3	2.3
$5s5p^4(^3P)$	^{2}P	1/2	179076.6	4.8	4.8	$5s^25p^2(^3P)5d$	^{2}F	5/2	257298.9	2.2	2.1
$5s5p^{4}(^{3}P)$	^{2}P	3/2	213042.9	3.4	3.4	$5s^25p^2(^1S)5d$	^{2}D	5/2	243103.4	-0.5	-0.5
$5s^25p^2(^3P)5d$	4F	3/2	180293.1	-0.2	-0.2	$5s^25p^2(^1S)5d$	^{2}D	3/2	256774.8	1.8	1.8
$5s^25p^2(^3P)5d$	4F	5/2	183552.2	-0.5	-0.5	$5s^25p^2(^3P)6s$	4P	1/2	247725.6	-0.1	-0.1
$-5s^25p^2(^3P)5d$	4F	7/2	192561.2	-0.6	-0.6	$5s^25p^2(^3P)6s$	4P	3/2	261563.8	-0.3	-0.3
$5s^25p^2(^3P)5d$	4F	9/2	199080	-0.6	-0.6	$5s^25p^2(^3P)6s$	4P	5/2	267649.7	-0.2	-0.2
$-5s^25p^2(^1D)5d$	^{2}F	5/2	191382.2	-0.6	-0.6	$5s^25p^2(^1D)5d$	^{2}S	1/2	251008.8	2.6	2.6
$5s^25p^2(^3P)5d$	4D	1/2	193882.1	-0.4	-0.4	$5s^25p^2(^3P)6s$	^{2}P	1/2	265653.5	-0.2	-0.2
$5s^25p^2(^3P)5d$		7/2	196130.2	-0.5	-0.5	$5s^25p^2(^3P)6s$	^{2}P	3/2	271083.2	-0.1	-0.1
$5s^25p^2(^3P)5d$	4D	3/2	197255.4	-0.2	-0.2	$5s^25p^2(^1D)6s$	^{2}D	5/2	288565.1	-0.2	-0.2
$5s^25p^2(^3P)5d$	4D	5/2	201857	-0.3	-0.3	$5s^25p^2(^1D)6s$	^{2}D	3/2	290903.6	-0.2	-0.2
$5s5p^4(^1S)$	^{2}S	1/2	200937.6	0.0	0.0	$5s^25p^2(^1S)6s$	^{2}S	1/2	307387	0.1	0.1

Fig. 1. Comparison of energy levels computed in active spaces AS_3 and AS_4 with NIST [3] ASD recommended values for Ba VI.

^[1] Rauch, T. Stellar laboratories III. New Ba V, Va VI, and Ba VII oscillator strengths and the barium abundance in the hot white dwarfs G191-B2B and RE 0503-289, Astronomy and Astrophysics 566, A10, 6 (2014)

^[2] Radžiūtė, L., Gaigalas, G. Theoretical investigation of Sb-like sequence: Sb I, Te II, I III, Xe IV, and Cs V, Atomic Data and Nuclear Data Tables, Volume 152, 101585 (2023)

^[3] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2023, October 18]. National Institute of Standards and Technology, Gaithersburg, MD. (2022)