Michèle Heurs

Title: Quantum metrology with non-classical states of light

Abstract:

Nowadays, non-classical (fixed-quadrature "squeezed") light is routinely used in second-generation interferometric gravitational wave detectors such as aLIGO and AdVirgo to increase their detection sensitivity, leading to some of the most exciting astrophysical discoveries of the past years. Beyond this well-known application example, squeezing is a quantum technique that can benefit precision metrology in many other areas. It can be useful whenever the signal-to-noise ratio of the measurement is fundamentally limited by the quantum noise of the employed and technically already ultra-stabilised laser light.

This talk will highlight exemplary applications of squeezed light, ranging from interferometric gravitational wave detection to sub-shot-noise limited spectroscopy. The latter example makes use of high-frequency squeezed light sources, so-called *squeezing combs*, which will be introduced in this talk. These squeezing combs exhibit entanglement between the individual upper and lower squeezing sidebands, which occur at the free spectral ranges of the squeezing cavity. This feature makes squeezing combs a promising resource for applications in quantum information.